

SCHOOL OF TECHNOLOGY AND PUBLIC MANAGEMENT

ENGINEERING TECHNOLOGY DEPARTMENT

Course ENGT 3260 Microcontrollers

Summer III 2015

Instructor: Dr. Maged Mikhail

Project Report

Submitted By: Nicole Kirch

7/10/2015

2

Table of Contents

Problem Statement…………………………………3

Theory……………………………………………...3

Project Description…………………………………3

Steps………………………………………………..3

Material Used………………………………………5

Implementation……………………………………..6

Code……………………………………..………….8

Result…………………………………………….....10

References…………………………………………..12

3

Problem Statement
 The goal of this project is to create a Theremin using the Arduino Uno microcontroller.

A Theremin is an electronic device that creates sound when the musician waves their hand in

front of the circuit. Traditionally the circuitry uses conductive antennas as capacitors to send a

voltage to oscillators that create the audio signal. Instead of sticking with only the traditional

method of sound creation, I will explore two other options that use the waving of the hand to

change the signal frequency and use the Arduino to turn that into an audio signal.

Theory
Microcontrollers are programmable chips that have central processing units (CPU), input

and output (I/O) ports, timers, serial communication and memory. In this project I will be using

the Arduino Uno. It has analog and digital ports, can power circuits up to 5V (but needs at least

a 9V or USB connection to be powered), and uses Universal Serial Bus (USB) for its serial

communication connection. The Uno is programmable with the C programming language.

Project Description
In order to convert hand movement into an electronic signal I need sensors. In the first

approach I will use a photocell to turn light intensity into voltage. The closer hands are to the

photocell, the lower the light reaching the sensor and lower the voltage. This voltage is sent to

the Arduino to turn into a certain frequency audio signal. For the second approach I will use a

proximity sensor to sense the distance of the hand to the sensor and this information is translated

through the circuit with a digital potentiometer setting pitch value and the 555 timer as the

oscillator to create the audio signal.

Steps

Light Theremin

Set up the Circuit

The focus of this circuit is to run and read the photocell. The photocell gets its required

5V from the 5V pin on the Arduino and sends its analog reading back to the Arduino. After the

Arduino processes it, it sends it to the speaker from a digital write pin (one with pulse width

modulation).

Create the code

Initially when I saw the tone() method in the source code, I thought that it was part of the

library named Tone. When I imported the library I had many errors relating to commands that I

had not created or initialized. Even after trying different methods, the error messages stayed. I

went back to the minimalist source code and removed the added library and it worked.

While this code is simple, it is deceptively so, as it interprets the photocell signal and

creates the audio signal. It reads the analog light intensity and converts it to a digital signal that

through the tone() method is turned into a square wave that is sent to the speaker. The integer

that is read is manipulated through a simple algorithm to make sure that it is greater than 200,

4

because the speaker has a hard time reproducing audio lower than that value in Hertz and human

ears have a hard time picking up on those frequencies.

Troubleshooting

When the debugged code was uploaded to the Arduino the pitch produced was in a lower

octave (pitch range). The range of notes is fairly limited due to the size and sensitivity of the

photocell. The size of the photocell also means that it can have inaccuracies if it doesn't have the

perfect lighting set up. Also the sound produced was too fluid, which made it hard to hear the

transition between pitches. Initially the algorithm to translate the voltage to pitch was [200 +

pitch/2], this produces a frequency no lower than 200 Hz. Changing the divisor to 1 produces a

higher octave. The longer the duration of the note causes a smoother transition between notes,

but if the duration is shorter the step-like transition between notes actually gives it a more

musical quality. This quality is reminiscent of 8-bit video game music.

Proximity Theremin

Set up the Circuit

All of the sound creation in this Theremin is in the circuitry of the 555 timer. What

determine the pitch are the values that are fed to it from the ultrasonic proximity sensor via the

digital potentiometer. Using a Trigger pin and an Echo pin, the sensor sends out a short high

frequency “ping” and when it hits something it bounces back and gets recorded. Trigger and

Echo are tied to digital read/write pins on the Arduino. The length of time between sending and

receiving the signal correlates to distance based on the speed of sound (343 m/sec). Next this

distance is turned into a pitch that the Arduino writes to the timer. The digital potentiometer

reads the integer with digital write from the Arduino and controls the timer based on this

integer’s value. When enabled, the timer becomes an oscillator that feeds an audio signal to the

speaker. To know when it is enabled the timer connects to an Arduino digital pin. From this pin

a Boolean (HIGH or LOW) is sent via the digital potentiometer.

Create the Code

Because the audio signal is created by the circuit, the code focuses on translating the

information gathered by the proximity sensor. The SPI library is imported to interface with the

digital potentiometer and the New Ping library is imported to create a sonar (ultrasonic) ping that

the proximity sensor turns the time delay into an integer of distance in centimeters. Once the

distance is read, it is evaluated on whether or not it is in range to give a correct value for pitch

control. If it is outside the range determined by the code, then the timer is disabled. Otherwise

the timer is enabled and ready for oscillation with the given integer (translated via ((distance -

10) * 3) + 1 algorithm).

Troubleshooting

This Theremin worked from the first upload without any extra tweaking of the code. It

has a limited range that it senses for pitch changing, and the code has made the circuit not

function outside of this range. Another issue is that the amplitude of the audio signal is low.

To change the amplitude I replaced the 10k ohm resistor going from the 5V pin to pin 7

on the timer to be 1k ohm which will create a smaller voltage drop across the resistor and allow

5

more voltage to reach the audio signal. This only slightly changed the pitch of the audio signal

and did not change the range sensitivity or the amplitude.

Materials Used

Light Theremin

1k ohm resistor

Photocell

Arduino Uno

8 ohm Speaker

9V (optional)

Proximity Theremin

10k ohm resistor * 2

1k ohm resistor (for troubleshooting)

100k ohm resistor *1

10 micro farad capacitor * 2

4.7 n farad capacitor

555 Timer

MCP4131 Digital Potentiometer

HC-SR04 Ultrasonic Range Sensor Proximity Sensor

Arduino Uno

8 ohm Speaker

9V (optional)

6

Implementation

Simple Theremin

The circuit of the light sensing Theremin only requires one resistor and the photocell in addition

to the Arduino, speaker and power source.

Light Brightness

Record as integer

Integer to Pitch

Play Tone

Start

End

7

Proximity Theremin

The Timer requires a certain set-up in order to act like an oscillator which requires 3 capacitors

and 2 resistors. The digital potentiometer requires a resistor to connect to the timer. All

integrated circuits used connect to Vcc, Ground and digital pins (some pulse width modulator

enabled) from the Arduino.

Pass to digital pot

Play Tone

End

Enable Timer

Is it too far

Is it too close

Send Ping

Get Distance

Yes

Yes

No

No

Start

Disable TImer

8

Code

Simple Theremin
//initializes the digital write pin for the speaker

 int speakerPin = 11;

 //initializes the analog read pin for the photocell

 int photocellPin = 0;

 //duration of notes if there is too much bleed

 int duration = 500;

 int reading = 0;

 int pitch = 0;

 void setup()

 {

 pinMode(speakerPin, OUTPUT);

 }

 void loop()

 {

 //reads the intensity of the light and generates an integer

 reading = analogRead(photocellPin);

 //sets the value of the pitch based on the photocell integer

 pitch = 200 + reading/1;

 //generates the tone from the pitch value and sends it to the speaker

 tone(speakerPin,pitch,duration);

 delay(duration);

 }

Proximity Theremin
//Add these libraries to the code

//SPI to control the digital potentiometer

#include <SPI.h>

//create a ping to find distance through the ultrasonic sensor

#include <NewPing.h>

// set pin 10 as the slave select for the digital pot

const int slaveSelectPin = 10;

// set pin 12 as the reset pin for the 555 timer

//this sets distance range

const int timerEnablePin = 12;

// Arduino pin tied to trigger pin on the ultrasonic sensor

#define TRIGGER_PIN 3

// Arduino pin tied to echo pin on the ultrasonic sensor

#define ECHO_PIN 2

// Maximum distance we want to ping for (in centimeters). Check device datasheet.

#define MAX_DISTANCE 4000

// NewPing setup of pins and maximum distance.

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);

int level = 0;

int distance = 0;

void setup()

{

 // set the slaveSelectPin as an output:

 pinMode (slaveSelectPin, OUTPUT);

 // set the 555 timer enable pin to output

 pinMode (timerEnablePin, OUTPUT);

9

 // disable the 555 timer

 digitalWrite(timerEnablePin, LOW);

 // initialize SPI:

 SPI.begin();

 // Open serial monitor at 115200 baud to see ping results.

 Serial.begin(115200);

}

void loop()

{

 // Send ping, get ping time in microseconds (uS).

 unsigned int uS = sonar.ping();

 // Convert ping time to distance

 distance = uS / US_ROUNDTRIP_CM;

 // Print distance to serial console

 Serial.print("Ping: ");

 Serial.print(uS / US_ROUNDTRIP_CM);

 Serial.println("cm");

 if (distance < 11)

 {

 // too close - disable the 555 timer - no sound

 digitalWrite(timerEnablePin, LOW);

 }

 else if (distance > 52)

 {

 // too far - disable the 555 timer - no sound

 digitalWrite(timerEnablePin, LOW);

 }

 else

 {

 // set pot level to a value proportional to distance

 //pitch algorithm

 level = int ((distance - 10) * 3) + 1;

 digitalPotWrite(level);

 // enable the 555 timer

 //play the pitch

 digitalWrite(timerEnablePin, HIGH);

 }

 //delay between pings in milliseconds

 delay(100);

}

// SPI transation to set the value of the digital pot

//this sets pitch value

int digitalPotWrite(int value)

{

 //take the SS pin low to select the chip:

 digitalWrite(slaveSelectPin, LOW);

 //send in the address and value via SPI:

 SPI.transfer(0);

 SPI.transfer(value);

 // take the SS pin high to de-select the chip:

 digitalWrite(slaveSelectPin, HIGH);

}

10

Results

Simple Theremin

 This set-up worked similarly to what I expected. Changing the intensity of the light to

the photocell changed the pitch and the pitch range was limited. The location of this limited

bandwidth was also able to change by changing the code. If I were to go more in depth with this

project then I would add a potentiometer to change the frequencies that are in range in real time

to couple with the photocell manipulation. The feature that I did not expect was the duration of

the pitch which could control how the pitch changes, either abrupt or smooth.

Photocell

Speaker

Arduino

11

Proximity Theremin

 I expected this to be the better Theremin, with more distance range and better tone

quality. But with not knowing too much of how the Ultrasonic Range Finder worked, it ended

up that this was the weaker procedure. The sound produced from this set-up had a lower

amplitude tone and a very small range to pick up pitch in comparison to the light Theremin. The

pitch algorithm is controlled through the code, but is determined by the manufacturer

specifications of the sensor, which is something I did not do enough research with. A larger

surface area object works better with this sensor than a hand, so I used a piece of paper instead of

my hand to wave in front of the sensor. As the object reaches the edge of the sensing range, the

sound starts to sound like pings instead of a continuous tone. This is the timer being enabled and

disabled.

Speaker

555 Timer

Proximity Sensor

Digital Pot

Arduino

12

References

1. Monk, Simon. “Lesson 10 Pseudo Theramin.” adafruit.com, published, last accessed

https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/arduino-code

2. Thompson, John. “Skill Builder: Advanced Arduino Sound Synthesis.” Make:, last

accessed July 13, 2015 http://makezine.com/projects/make-35/advanced-arduino-sound-

synthesis/

3. Jackson, Jamie. “Arduino Theremin.” blog.jacobean.net, published January 5, 2013. last

accessed July 13, 2015 http://blog.jacobean.net/?p=766

4. psychephylax . “NewPing Library.” Arduino.cc, last modified November 4, 2013. Last accessed

July 13, 2015 http://playground.arduino.cc/Code/NewPing

5. Glinsky, Albert. “Theremin: Ether Music and Espionage.” Board of Trustees of the

University of Illinois, 2000

https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/arduino-code
http://makezine.com/projects/make-35/advanced-arduino-sound-synthesis/
http://makezine.com/projects/make-35/advanced-arduino-sound-synthesis/
http://blog.jacobean.net/?p=766
http://playground.arduino.cc/Code/NewPing

